Sox9 is sufficient for functional testis development producing fertile male mice in the absence of Sry.
نویسندگان
چکیده
In the dominant mouse mutant Odd Sex, XXOds/+ mice develop as phenotypic, sterile males due to male-pattern expression of Sox9 in XXOds/+ embryonic gonads. To test whether SOX9 was sufficient to generate a fully fertile male in the absence of Sry, we constructed an XY(Sry(-))Ods/+ male mouse, in which the male phenotype is controlled autosomally by the Ods mutation. Mice were initially fertile, but progressively lost fertility until 5-6 months when they were sterile with very few germ cells in the testis. XY(Sry-)Ods/+ males also failed to establish the correct male-specific pattern of vascularization at the time of sex determination, which could be correlated to an inability of XY(Sry-),Ods/+ males to fully down-regulate Wnt4 expression in the embryonic gonad. Increasing the amount of SOX9 by producing homozygous XY(Sry-)Ods/Ods males was able to completely rescue the phenotype and restore correct vascular patterning and long-term fertility. These data indicate that activation of SOX9 in the gonad is sufficient to trigger all the downstream events needed for the development of a fully fertile male and provide evidence that Sox9 may down-regulate Wnt4 expression in the gonad.
منابع مشابه
I-43: Identification of SOX3 as an XX MaleSex Reversal Gene in Mice and Jumans
Background: Mammals utilise an XX/XY system of sex determination in which the Y-linked gene SRY (Sexdetermining region Y) exerts a dominant masculinising influence on sexual development. Sex chromosome homology and comparative sequence studies suggest that SRY evolved from the related SOX3 gene on the X chromosome, although there is no direct functional evidence to support this hypothesis. The ...
متن کاملI-17: The Mechanism of Gonadal Sex Determination
Background In mammals, a single exon gene SRY on the Y-chromosome is activated in the XY gonadal primordium and initiates a cascade of molecular and morphological events leading to testicular differentiation. SRY-encoded protein (SRY) is a transcription factor harboring a HMG-box DNAbinding motif that upregulates SOX9, which encodes another transcription factor sharing the DNA binding motif wit...
متن کاملTesticular Differentiation Occurs in Absence of R-spondin1 and Sox9 in Mouse Sex Reversals
In mammals, male sex determination is governed by SRY-dependent activation of Sox9, whereas female development involves R-spondin1 (RSPO1), an activator of the WNT/beta-catenin signaling pathway. Genetic analyses in mice have demonstrated Sry and Sox9 to be both required and sufficient to induce testicular development. These genes are therefore considered as master regulators of the male pathwa...
متن کاملFunctional analysis of Sox8 and Sox9 during sex determination in the mouse.
Sex determination in mammals directs an initially bipotential gonad to differentiate into either a testis or an ovary. This decision is triggered by the expression of the sex-determining gene Sry, which leads to the activation of male-specific genes including the HMG-box containing gene Sox9. From transgenic studies in mice it is clear that Sox9 is sufficient to induce testis formation. However...
متن کاملPainful ovulation in a 46,XX SRY −ve adult male with SOX9 duplication
46,XX disorders of sexual development (DSDs) occur rarely and result from disruptions of the genetic pathways underlying gonadal development and differentiation. We present a case of a young phenotypic male with 46,XX SRY-negative ovotesticular DSD resulting from a duplication upstream of SOX9 presenting with a painful testicular mass resulting from ovulation into an ovotestis. We present a lit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 14 9 شماره
صفحات -
تاریخ انتشار 2005